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Abstract
Surface codes describe quantum memory stored as a global property of
interacting spins on a surface. The state space is fixed by a complete set
of quasi-local stabilizer operators and the code dimension depends on the first
homology group of the surface complex. These code states can be actively
stabilized by measurements or, alternatively, can be prepared by cooling to
the ground subspace of a quasi-local spin Hamiltonian. In the case of spin-
1/2 (qubit) lattices, such ground states have been proposed as topologically
protected memory for qubits. We extend these constructions to lattices or more
generally cell complexes with qudits, either of prime level or of level d� for
d prime and � � 0, and therefore under tensor decomposition, to arbitrary
finite levels. The Hamiltonian describes an exact Z/dZ gauge theory whose
excitations correspond to Abelian anyons. We provide protocols for qudit
storage and retrieval and propose an interferometric verification of topological
order by measuring quasi-particle statistics.

PACS numbers: 05.30.Pr, 03.67.Lx, 11.15.Ha

(Some figures in this article are in colour only in the electronic version)

1. Introduction

There is a rich history to the study of topologically ordered states of matter. Such states are
defined by the property that all physical correlation functions are topological invariants. In
the field of condensed matter, these states have been proposed as ground states of models for
high temperature superconductors and for fractional quantum Hall states [20]. Furthermore,
it has been demonstrated that such order can arise as a low energy property of hard core
bosonic spin lattice models. In contrast to the familiar situation with spontaneous symmetry
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breaking, here the ground states exhibit more symmetry than the microscopic equations of
motion. It has been suggested that such emergent properties may model gauge fields and
particles found in nature [15]. In the field of quantum information it was shown by Kitaev [12]
that ground states of Hamiltonians which can be expressed as a sum over quasi-local stabilizer
operators provide for topologically protected qubit memories. These states are referred to as
surface codes. They are robust to arbitrary quasi-local perturbations and have Abelian anyonic
excitations. In order to perform universal fault-tolerant quantum processing, it is necessary
to use non-Abelian anyonic excitations that transform under an appropriate group [12]. From
the algorithmic point of view attempts have been made to understand quantum computing in
terms of non-Abelian anyon operations [1]. The pursuit of microscopic lattice models that
admit anyonic eigenspaces sufficient for universal quantum computation is an area of active
research [7].

This survey attempts to exhaust the topic of surface codes for topologically protected
qudit memories. While not as powerful as fault tolerant models with non-Abelian anyons,
these models offer a new perspective on non-local encoding of quantum information and
give us insight into microscopic realizations of lattice gauge theories. Surface codes for
two level systems [12] are by now well understood. Their implications for error-resistant
quantum computer memories have also been considered [5]. In the error-correction context,
the topologically ordered eigenstates may be understood as a particular case of quantum
stabilizer codes (e.g. [8]). The error lengths of the resulting stabilizer codes are not exceptional,
and only rarely do anyonic systems appear in classifications of near-optimal quantum codes.
(Optimality in this sense refers to minimizing the number of code-qubits against the number of
errors a code may correct.) Yet all the error correction operations are local upon the lattice in
which the quantum data are stored, which might improve scalability. Moreover, an aside to an
argument focused on deriving a famous stabilizer code from the topology of the real projective
space in fact demonstrates that a qubit lattice is not required [6]. Rather, a two-complex (see,
e.g., [14]) suffices, where a two-complex is a generalization of a graph in which discs are also
allowed with edge boundaries. On the physical system which places a qubit on each edge
of a (cellular or simplicial) two-complex �, there exists a Hamiltonian whose topologically
ordered (stabilizer-code) ground states are parametrized by the first homology group of the
complex with bit coefficients: H1(�, F2). The Hamiltonian is a sum of vertex and edge terms
which are proportional to either tensors of Pauli Z operators around qubits on edges adjacent
to a vertex or tensors of X operators on edges bounding a face of the complex.

For some time the existence of stabilizer codes over qudits (d prime) has been known [8].
Yet only recently have results on the topic become as strong as those applicable in the bit case,
including estimates of optimal code lengths etc ([11], see also [9]). Moreover, extensions to
prime-power (d�) level qudits (actually qud� its) have also been found, so that tensors provide
a stabilizer formalism for all finite-level systems. In this work, we exploit the new stabilizer
formalism to construct codes on a two-complex whose edges carry prime-d-level qudits, and
we also outline the extension to d�-level qudits. The associated ground states are parametrized
by H1(�, Fd� ), where the coefficient field is viewed as an Abelian group under addition. This
requires a few new ideas, although care must be taken with sign conventions which were
vacuous in the earlier work on F2-coefficients. Thus, after tensoring we have constructed
surface codes with qudits for arbitrary finite d placed on the edges of a generic orientable
two-complex �. Recent work by Bombin and Martin-Delgado [2] investigates classical and
quantum homological error correction codes. They construct a class of surface codes for
qudits which asymptotically saturates the maximum coding rate and provide several example
encodings on various two-complexes. Here we do not address the issue of coding efficiency.
Rather we concentrate on explicit constructions of Hamiltonians that support qudit surface
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codes in their ground eigenstates and describe how one might encode and decode therein. A
second difference is the choice of the definition of stabilizer codes for composite d. This work
views d as a product of prime powers p� = q and exploits Pauli X and Z operators and Fourier
transforms relevant to these fields, following [11]. This creates a topological code distinct
from a stabilizer code using the usual X and Z operators for d-level systems, following [9].
Bombin and Martin-Delgado follow the conventions of [9].

The manuscript is intended to be self-contained. Thus, section 2 opens by reviewing
some the required facts on stabilizer codes. In order to aid readers less interested in the
general case, section 3 treats prime-d level encoding on surfaces separately. Methods for
encoding, decoding and stabilizer measurements are given in section 4. Extensions to the
case of prime power qudit encodings are given in section 5. Errors in our model correspond
to low lying excitations in the Hamiltonian whose superselection sectors may be viewed as
massive particles on the underlying cellulation. In section 6, it is shown that our model
reproduces a Z/dZ gauge theory where errors are described by particle–antiparticle pairs of
charge/flux dyons. We propose an interferometer circuit for measuring the statistics of these
quasiparticles. We conclude with a summary of the main results.

2. Qudit stabilizer codes

We next review stabilizer codes [8, 11]. This section focuses on the case of qudits with a
prime number of levels. The first subsection recalls the definition and a basic technique. The
next subsection generalizes a well-known construction from bits to dits.

2.1. Stabilizers and ground states

Let d be a prime number, and consider the qudit state space H(1, d) = C|0〉⊕ · · ·⊕ C|d − 1〉,
with a pure state of n qubits being a ket withinH(n, d) = H(1, d)⊗n. A possible generalization
of the Pauli operators on H(1, d) would be to consider the group generated by the following
unitary matrices:

X|j 〉 = |j + 1 mod d〉
Z|j 〉 = ξ j |j 〉, for ξ = exp(2π i/d).

(1)

These are not Hermitian unless d = 2. The qudit Pauli-tensor group, say P(n, d) �

U [H(n, d)], is the group of unitary matrices generated by n-fold tensors of elements of
{Id,X,Z}.

We might be more explicit in the description of P(n, d). First, for n = 1, label the
multiplication in Fd to be a dot-product. Then ZbXa = ξa•bXaZb. More generally, for
dit-strings a, b ∈ (Fd)

n, we use X⊗a and Z⊗b to abbreviate Xa1 ⊗ Xa2 ⊗ · · · ⊗ Xan and
similarly Z⊗b for Zb1 ⊗ Zb2 ⊗ · · · ⊗ Zbn . For the n-entry dot-product with values in Fd , we
have Z⊗bX⊗a = ξa•bX⊗aZ⊗b. Thus explicitly

P(n, d) = {ξ cX⊗aZ⊗b; a, b ∈ (Fd)
n, c ∈ Fd} (2)

The qudit stabilizer groups are subgroups G ⊆ P(n, d). The code subspace of such a stabilizer
group is the joint +1 eigenspace of all g ∈ G.

Of course, such joint eigenspaces might well be trivial. Yet a standard argument shows
that they are nontrivial in certain cases. This technique is so fundamental to stabilizer code
manipulation that we wish to highlight it; it will be used several more times in the course
of the work. While actually an elementary technique from representation theory, it has also
featured prominently in the quantum computing literature [13].
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Stabilizer code projectors. The sum of unitary maps π = (#G)−1 ∑
g∈G g is a projection

onto the code-subspace. We present the argument. First, π2 = π since πg = π for any
g ∈ G. Second, π = π † since adjoints are inverses in the unitary group. Thus π is a
projection, and it remains to verify that π projects onto the stabilizer code space. Now split
H(n, d) = V1 ⊕ V2 ⊕ · · · ⊕ V� into irreducible orthogonal unitary subrepresentations of G.
For each Vj , the image under π and its orthogonal complement form a decomposition of Vj .
Thus by irreducibility, π either preserves a Vj or πVj = 0. Clearly the former holds for
any irrep (i.e. irreducible representation) within the code subspace of G. On the other hand, if
〈ψ |g|ψ〉 �= 1 for some g, then the latter holds.

As a remark, irreps within the code subspace of G must be one-dimensional and are
also known as trivial representations. As a second remark, the code subspace is nonzero iff
Trace(π) �= 0 iff (G ∩ {ξ j Id}) = {Idn}.

In the Hermitian case (d = 2), it is standard that all eigenvalues of group elements are
±1, so that a suitable Hamiltonian for which the code space is the ground state is −π . For
general d, the eigenvalues lie within the unit circle, so that −1 is still the least possible real
part. Also, g†|λ〉 = (1/λ)|λ〉 = λ|λ〉 since g† = g−1. Thus, one may place the qudit code
subspace into the ground state of a Hamiltonian by adjusting each summand of π with a
Hermitian conjugate: H = ∑

g∈G −(g +g†), so that the eigenvalues of the summands are then
−2Re[spec(g)].

2.2. Quantum circuits for qudit stabilizer measurements

Given an n-qudit system, it is important for purposes of error correction to be able to test
whether or not a state |ψ〉 lies within the stabilizer code of some G = 〈{gj }〉 ⊆ P(n, d). It
suffices to test whether |ψ〉 is a +1 eigenvector of each generator gj . We sketch quantum
circuits which achieve such a measurement.

Let Fd = d−1/2 ∑d−1
j,k=0 ξ jk|j 〉〈k| be the qudit Fourier transform. Considering eigenkets,

F†
dXFd = Z. Now the number operator n = ∑d−1

j=0 j |j 〉〈j | suffices to infer the eigenvalue of
Z and project into the appropriate eigenstate. As a circuit, we might denote a number operator
measurement with the Z symbol, one of several common conventions in the qubit case:

Determination of the X eigenstate may be accomplished by

Similarly, there is some one-qudit unitary which will diagonalize any XaZb ∈ P(1, d), usually
not a Fourier transform. Yet using the diagonalization and a number operator one may infer
an eigenstate.

For Z⊗k and X⊗k , we suggest using addition gates along with a qudit ancilla. We will
denote |j, k〉 	→ |j, (j + k) mod d〉 by a typical control bullet with the target (in the formula
second) line holding a + gate. The the following construction of Z⊗2 generalizes for Z⊗k:

For Z⊗k|j1, j2, . . . , jk〉 = ξ j1+···+jk |j1, j2, . . . , jk〉, and we have placed |(j1 + · · · + jk) mod d〉
on the ancilla line before the number operator is applied. Note that Z ⊗ Z−1 results by
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replacing one of the modular addition gates above with modular subtraction. Powers of
operators are measured by multiple applications of the sum gate appropriately. Finally,(
F†

d

)⊗k
X⊗kF⊗k

d = Z⊗k , so that the following diagram for X⊗2 extends:

Using similarity transforms by qudit Fourier transforms, we may similarly achieve X ⊗ Z ⊗
Z ⊗X etc. Yet more generally, the comment on existence of diagonalizations above produces
circuits for arbitrary elements g ∈ P(n, d).

3. Homologically ordered ground states for prime qudits

It is typical to place topological orders on explicit planar or spatial lattices of spin-j particles,
e.g. square, triangular, hexagonal, Kagome, etc. An alternative was presented in Freedman
and Meyer’s derivation of certain error-correcting codes of Shor and LaFlamme [6]. Namely,
qubits could be placed on the edges of a two-complex �, and an appropriate Hamiltonian
would have the dimension of its degenerate ground-state eigenspace equal to the number of
classes within H1(�, F2). We next extend this construction to prime-level qudits; the task is
mainly to keep track of sign conventions which are vacuous in F2. We then check that the
ground-state eigenspace is similarly spanned by kets associated to elements of H1(�, Fd), by
applying stabilizer-code techniques.

3.1. Cellular Hamiltonians

Label V to be the vertices of �, E to be the edges, and F to be the faces. We also
require properties that hold if � is a cellulation of an orientable, compact, connected surface.
Specifically, each edge has a boundary of exactly two vertices and each face has an orientation
according to which each edge lies in the boundary of two faces with the edge taking opposite
orientations in the boundary of each face. Finally, � is finite and H2(�, Fd) is a copy of Fd

spanned by [�], the sum of all faces with their orientation according to �.
We briefly review the appropriate homology. Label the chain sets to be formal sums of

vertices, edges and faces respectively: C0(�, Fd) = spanFd
(V), C1(�, Fd) = spanFd

(E) and
C2(�, Fd) = spanFd

(F). We generally drop the � and coefficient system, which should be
clear from the context. Since � is a cell complex, there exist boundary operators

C0
∂←−C1

∂←−C2 (3)

with ∂2 = 0 [14]. For example, if an edge e connects v1 and v2, say e = [v1, v2], then
∂e = v1 − v2 = v1 + (d − 1)v2. Note that the definition of � demands that edges e ∈ E are
images of [0, 1] within �, and hence all edges are implicitly oriented. The coefficients further
allow for Fd -valued multiplicities on each edge. Since ∂2 = 0, we have ker(∂1) ⊇ image(∂2)

for ∂j : Cj → Cj−1. Thus we may define the Fd vector space H1(�, Fd) = ker(∂1)/image(∂2).
This first homology group is well known to be a topological invariant, i.e. any topological
space homotopic to that underlying � will produce an H1(�, Fd) of the same dimension.
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Homology elements are represented by cycles, i.e. elements of the kernel of the boundary
operator. However, several elements might represent the same class, differing by a boundary,
i.e. an element of ∂(C2). For ω ∈ C1, we use [ω] to denote the equivalence class ω + image(∂2),
which is an element of H1(�, Fd).

Recall that any Hamiltonian on n-qudits may be written as a sum of tensor products of
Hamiltonians (Hermitian matrices) on each factor. The degree of a summand in the tensor
basis is the greatest number of non-identity factors in any term. A k-local Hamiltonian is a
Hamiltonian whose degree is bounded by k in some decomposition. The topologically ordered
Hamiltonians defined below are k-local for k the maximum of the valence of any vertex and
the number of edges on any face.

Let n = #E , and consider placing a qudit on each e ∈ E . Again, each edge is the image
of [0, 1] and is oriented (by �) from one vertex to the other. For the qudits associated with
each edge, the |1〉 excitation of the edge will be implicitly associated to this orientation, while
the |d − 1〉 state corresponds to the other.

On the associated physical system H(n, d), let Xe and Ze denote the operator applied to
the qudit of that edge with identity operators buffered into the remainder of the tensor. For
each v ∈ V , we define a Pauli tensor and vertex Hamiltonian by

gv =
∏

e=[∗,v]

Ze

∏
e=[v,∗]

Z−1
e

(4)
Hv = −(

gv + g†
v

)
.

For some U > 0, we then define the potential energy term of a topologically ordered
Hamiltonian by H∂ = U

∑
v∈V Hv .

The notation H∂ has been chosen for the following reason. Suppose that ω = ∑
e∈E nee

is a chain, with each ne ∈ Fd . There is an associated qudit computational basis state, say
|ω〉, which is local and places the qudit of each e in state |ne〉. We claim that |ω〉 is a ground
state of H∂ iff ∂ω = 0, i.e. ω is a cycle. To see this, one verifies that gv|ω〉 = ξ c|ω〉 where
∂ω = cv +

∑
w �=v cww. Hence |ω〉 is in the stabilizer 〈{gv}〉 ⊆ P(n, d) iff |ω〉 is an eigenstate

of each Hv of minimial (real) eigenvalue iff |ω〉 is in the degenerate ground-state eigenspace
of H∂ .

Strictly speaking, one should not refer to the ground state of H∂ as being topologically
ordered. Admittedly, ground states are of the form |ψg〉 = ∑

αω|ω〉 for ω a cycle, colloquially
a loop of excited edges. For d > 2, the edges must be properly oriented, and hitting every
edge of a Y junction is allowed if multiplicities are accounted for. Yet the cycle subspace is
not a topological invariant. Indeed, should � be a cell complex, subdividing � by breaking
each 2-simplex (triangle) into several subtriangles will generally increase the size of ker(∂1),
although such a subdivision does not change the topology of the underlying manifold. Thus,
we next add a kinetic energy term to the potential, splitting the degeneracy of H∂ and reducing
to a final ground state capturing homology.

For each face f , the face Hamiltonian Hf is defined as follows. Orient f according to the
orientation of the manifold underlying �. Label edges by ∂f = ∑p

k=1 okek for ok ∈ {1, d −1}.
Then we define

gf = Xo1
e1

Xo2
e2

Xo3
e3

. . . X
op

ep
Hf = −(

gf + g
†
f

)
. (5)

With these choices, [Hf ,Hv] = 0 for all faces f and vertices v. For the two edges incident
on a given vertex will be in the boundary of some face, and after correcting for orientation
conventions this commutativity check reduces to [X⊗X,Z⊗Z−1] = 0 (see figure 1). Hence,
for some constant h > 0, we might define HKE = h

∑
f ∈F Hf . Due to commutativity, the
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(a) (b)

Figure 1. Cellulation of an orientable surface. Each system particle (qudit) is represented
by an edge. Particle interactions occur between all edges that meet at a common vertex
and all edges comprising a plaquette boundary. (a) In this example, physical qudits reside
on the vertices of a Kagome’ lattice such that the resultant cellulation is a honeycomb
lattice. Edge and face orientations are indicated. For the vertices v0, v1 and faces f0, f1
the mutually commuting operators in the Hamiltonian are gv0 = Z[v6,v0]Z[v5,v0]Z

−1
[v0,v1],

gv1 = Z[v0,v1]Z
−1
[v1,v9]Z

−1
[v1,v2], gf0 = X[v0,v1]X[v1,v9]X

−1
[v8,v9]X

−1
[v7,v8]X

−1
[v6,v7]X[v6,v0], gf1 =

X−1
[v0,v1]X

−1
[v1,v2]X[v3,v2]X[v4,v3]X[v5,v4]X

−1
[v5,v0]. (b) Same cellulation with vertex (red) ancilla and

face (green) ancilla. These can be used to perform local stabilizer checks or to mediate many body
interactions between edges from physical 2-local interactions as described in section 4.3.

kinetic energy Hamiltonian respects the ground-state degeneracy of H∂ . Label H = H∂ +HKE.
We next show that the dimension of the ground-state degeneracy of total Hamiltonian

H = H∂ + HKE (6)

(over C) corresponds to the number of elements of H1(�, Fd).
Before the argument, we present extra notation and sketch what will follow. Three

stabilizer groups are relevant, namely Gv = 〈{gv}v∈V〉,Gf = 〈{gf }f ∈F 〉 and G =
〈{gv}v∈V ∪ {gf }f ∈F 〉. This notation does not refer to the expectation of an observable but
rather the minimal subgroups of P(n, d) holding each set. The idea behind the proof is then
to argue that the composition stabilizer code projectors of Gf and Gv are the stabilizer code
projector for G, equivalently the ground state of H.

3.2. Homology class ground states

The goal of this section is to associate the degeneracy (dimension) of this ground state of
H = H∂ + HKE to #H1(�, Fd). We accomplish this in two distinct cases for the manifold
underlying �:

(i) The manifold is orientable, compact and has no boundary, so that H2(�, Fd) = Fd .
(ii) The manifold is compact with boundary and has H2(�, Fd) = 0. For homology is a

homotopy invariant, and such a surface retracts into its one skeleton.

Assertion. Let Hloop denote the ground state of H∂ and H[ω] = ⊕η∈[ω]C|η〉:
Hloop = ⊕ω∈ker ∂C|ω〉 = ⊕[ω]∈H1(�,Fd )H[ω]. (7)

Throughout this section, let π = #G−1 ∑
g∈G g. Suppose either case i or case ii. Then for

each [ω], the restriction of π to H[ω] is a rank-one projector whose (nonzero) image is an
element of ker(H∂ + HKE) = ker H .
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To verify this, suppose |ω〉 is the computational basis state of some cycle ω ∈ C1 (i.e.
∂ω = 0). Then we may also speak of [ω] ∈ H1(�, Fd), |ω〉 is in the ground state of H∂ . Label

|[ω]〉 def= πf |ω〉 = (#G)−1
∑
g∈G

g|ω〉. (8)

It suffices for the assertion to show the following.

• If ω1 and ω2 each lie in [ω], then |[ω1]〉 and |[ω2]〉 differ by a global phase.
• If |ω〉 �= 0, then |[ω]〉 �= 0.

This suffices to see the restriction of π is a rank-one projector, since the first item demands
the rank � 1 and the second demands the rank � 1.

We begin with the first item, writing ω1 − ω2 = η ∈ im ∂2. Since the underlying
manifold of � is orientable, suppose for convenience that all faces f have positive orientation.
Then for η = ∑

f ∈S(η) f we put gη = ∏
f ∈S(η) gf , implying |ω1〉 = gη|ω2〉. Note that

gηπf = πf gη = πf . Thus |[ω1]〉 = πf gη|ω2〉 = πf |ω2〉 = |[ω2]〉.
We next demonstrate that πf |H[ω] has rank � 1. As discussed in section 2, it suffices to

show that the trace of this projection, when restricted to the subspace H[ω] which it preserves,
is nonzero, and that immediately follows if ξ�Idn ∈ Gf demands ξ = 1. For all other
elements of P(n, d) are traceless when restricted to Hloop, since gη|ω〉 = |ω + ∂η〉. Case i
and case ii differ somewhat. In each case, multiples of the identity in Gf are products gη for
[η] ∈ H2(�, Fd). In case i, besides the empty product of the gf we also produce multiples of
Idn as the full product

∏
f ∈F gk

f , 0 � k � d −1. This corresponds to H2(�, Fd) = Fd . Yet for
these products ξ = 1, as may be verified at an individual edge. In case ii, there is no nontrivial
product of the gf which produces a multiple of the identity. This is due to the retraction
demanding H2(�, Fd) = 0, the second homology of the one complex we may retract onto.
Colloquially, taking a sum of all faces will force a boundary edge to be acted on nontrivially
by gf for the single face it bounds. Thus in case ii the only multiple of the identity is the
trivial product of the gf , and ξ = 1 tautologically. In each case, πf |H[ω] is not traceless and
hence has rank at least 1. Given the last paragraph, the rank is exactly 1.

Retracing the argument above, we may compute the image under π of the code space of
Gv is ⊕[ω]∈H1(�,Fd )C|[ω]〉, which is also the code space of G. Since πf is a rank-1 projector
when restricted to each H[ω], we have the following:

dimC(groundstate of H) = #H1(�, Fd). (9)

3.3. Ground states on a punctured disc

In practice, constructing physical realizations of Hamiltonians corresponding to two-
complexes without boundary is daunting. It is possible to simply identify opposite qudits
on the square fundamental domain of S1 × S1 = R2/Z2, but this would require some sort
of nonlocal coupling on the boundary in addition to the standard lattice coupling. Given a
lattice Hamiltonian that arises from electromagnetic coupling, one could speculate about some
kind of apparatus (perhaps involving fibre-optic cabling [19]) which allows for interactions
between boundary qudits.

Alternately, we might modify the homological ground states to allow for a surface with a
boundary curve and punctures. Consider a cellulation � of a disc with k punctures. An example
with k = 2 is shown in figure 2. Label the j th puncture face f ′

j which has the same orientation
as �. Also label the outer boundary of the disc ∂� and the boundaries of the j th puncture ∂f ′

j .
Analogous to the previous construction, the Hamiltonian on � is defined H ′ = H∂ +H ′

KE . Here
the kinetic term is modified so that the set of face operators does not include operators on the
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Figure 2. An oriented two-complex �, which is a cellulation of a two punctured disc encoding two
logical qudits in n physical qudits. Vertex operators Hv are k local where k is the valence of the
vertex whereas all face operators Hf are 4 local in this example. Ground states are +1 eigenstates
of the stabilizer group G′, but not all the stabilizer generators are independent. There are two
independent non-trivial cycles on � which can be generated by closed loops of X operators around
the boundaries ∂f ′

a and ∂f ′
b . Similarly, there are two independent non-trivial cycles on the dual �̃

which can be generated by strings of Z operators that connect two independent pairs of boundaries
of the complex. Shown are the Pauli group operations ZkXj on qudit a and ZsXr on qudit b.

punctured faces f ′
j , i.e. H ′

KE = h
∑

f ∈F ′ Hf , where F ′ = F\{f ∈ ∪k
j=1f

′
j

}
. Consequently,

there are edges on the boundaries ∂f ′
j that are acted on by X operators from faces on one side

only. Another way to see this is that all edges of the dual cellulation that cross the boundary
∂f ′

j share a common vertex located at f ′
j in �. Each edge in � has two vertices in V , hence

the product over all vertex operators is∏
v∈V

gv = Idn . (10)

Not every edge in � borders two faces in F ′, however, and the product over all face operators
is:

∏
f ∈F ′

gf = C∂�(X)

k∏
j=1

Cj(X), (11)

where C∂�(X) = ∏
ej ∈∂� X

oj

ej
and Cj(X) = ∏

ej ∈∂f ′
j
X

oj

ej
. The orientation oj = 1 if the edge

ej is oriented in the same direction as the boundary on which the edge resides, and ej = d − 1
if the orientations are opposite.

First we argue that the code space in nonempty. Recall, the code states are defined as +1
eigenstates of the stabilizer group G′ = 〈{gf |f ∈ F ′}�{gv}〉. The operators 〈{gv}〉 and 〈{gf }〉
commute and the only additional relations obtained from the stabilizer group, embedded in
equations (10) and (11), guarantee that

(
G′ ⋂ ξ j Idn

) = Idn . We next show that the code space
is Hgr = H(k, d) by considering the action of operators that commute with any member of
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G′ but act non-trivially on Hgr . One such set of operators is non-trivial Fd valued cycles
on � generated by {Cj(X)}. We do not include the non-trivial cycles generated by C∂�(X)

because by equation (11) their action on the code subspace is not independent but can be
generated by the cycles around the boundaries of the punctures. A non-trivial cycle on �̃ is
generated by a string of Z operations along a path Path(j) that begins on an edge of ∂f ′

j and
ends on an edge of ∂� without touching other edges on puncture boundaries. We denote the
generator of such a cycle Cj(Z) = ∏

ej ∈Path(j) Z
oj

ej
where ok = 1 at the edge ek ∈ ∂f ′

j if ek

and ∂f ′
j share the same orientation and ok = d − 1 otherwise. The other oj are chosen in a

consistent way such that [H ′, C(Z)f ′
j
] = 0. The operators on cycles satisfy the commutation

relations C(Z)ajC(X)bj = ξabCj (X)bCj (Z)a for a, b ∈ Fd as is easily verified by considering

the action on the one intersecting edge e ∈ ∂f ′
j . As such the set Rj = {Cj(Z)aCj (X)b)}d−1

a,b=0
generates a representation of the Pauli group P(1, d). For sufficiently spaced punctures, all
paths Path(j) exist and the group R = 〈{Rj }kj=1

〉
forms a representation of P(k, d). We then

find that the ground subspace of H ′ encodes k qudits and the set Rj performs local Pauli group
operations on the j th qudit.

In a lattice implementation of our model Hamiltonian, the punctures may arise as physical
defects in the system. Coding operations that correspond to cycles around defects vividly
illustrate the fact that even short-ranged correlators (short relative to the system size) in a
topologically ordered state can have non-trivial values.

4. Quantum memory: input/output and error detection

We next describe how one might exploit Abelian anyons as quantum memories; the qubit case
has been studied thoroughly [5]. In the new setting of prime level qudits, we must treat storage
and retrieval of quantum data. It is also possible to generalize earlier discussions of stabilizer
operations on topologically stored data while in code, but we will not treat that topic here.

4.1. Storing qudits

Placing quantum data into such a |[ω]〉 is difficult. For large lattices, this would be a special
case of the qudit state-synthesis problem. Universal circuits of two-qudit operators capable of
reaching arbitrary n qudit states are known to scale exponentially with the number of qudits [3].
In this section, we propose an alternative which requires a number of stabilizer measurements
that is linear in the size of the lattice and also a sublinear number of entangling gates.

For an orientable, connected, compact surface of genus g, it is well known that
H1(�, Fd) = (Fd)

2g . (See e.g. [14].) We next describe how one might transfer a qudit
|ψ〉 stored within an ancilliary copy of H(1, d) to the topologically ordered ground-state
eigenspace of H, say Hgr

∼= Cd2g

.
Since section 4.2 describes how to swap a pure state of Hgr with any ancilla state, the

case |ψ〉 = |0[ω]〉 would suffice. We treat generic |ψ〉 since this is not (much) more difficult
than the base case. Also, without a swap, the fact that |ψ〉 is topologically protected makes
the coded state inconvenient to manipulate. Since the topologically ordered groundspace is a
stabilizer code, Pauli tensors in the normalizer may be applied without carrying data out of
the code. These are not universal, and general operations would be more convenient after an
ancilla swap. Hence, a certain amount of effort might be saved by storing a desired |ψ〉 at the
outset.

We begin with |ψ〉 = ∑d−1
j=0 αj |j 〉. Choose a copy of Fd ⊆ H1(�, Fd), and let [ω]

correspond to 1 ∈ Fd . Choose ω ∈ [ω], preferably with as few nonzero (excited) edges as
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possible. Now jω is also a cycle for 0 � j � d − 1, and by our choice {[jω] = j [ω]}d−1
j=0

contains distinct homology classes. Using whatever unitaries are convenient, we form

|ψ̃〉 =
d−1∑
j=0

αj |jω〉. (12)

For example, on a toric � one might have n-sites and choose a vertical or horizontal cycle on a
square fundamental domain. Then the appropriate unitary would cost O(

√
n) gates. Our goal

is to construct |ψstorage〉 = ∑d−1
j=0 αj |[jω]〉. For the remainder of the construction, note that all

intermediate states are in the code space of the stabilizer Gv = 〈{gv}〉 ⊆ P(n, d). Hence, we
may correct for errors in this code at any time. Also, the scheme below might be thought of
as arising from an error correction to the stabilizer Gf = 〈{gf }〉. Nonetheless, only |ψstorage〉
is in the code space of the full stabilizer G. Arbitrary local errors are correctible in the code
space of G since the normalizer of G contains {Ze,Xe; e ∈ E} [8, 11]. Since this is clearly
false for Gv , one should perform the initialization above as quickly as possible.

We suppose an ordering of the faces f ∈ F , say f1, f2, . . . , fL, such that for each
fixed � the boundary of f� contains some edge e� which (i) is not within the boundaries of
f1, f2, . . . , f�−1 and (ii) does not intersect the support of ω. This is not possible for the last
face fL, but we only require this condition for 1 � � � L − 1. To store the qudit beginning
with |ψ̃〉, we apply the following steps for each f�.

• Measure the eigenvalue of gf�
, e.g. using an ancillary qudit. (See section 2.2.) The

eigenvalue λ will be an element of {ξ j }d−1
j=0.

• If λ = 1, then the state has collapsed onto the stabilizer 〈{gv} � {gfk
; 1 � k �

�}〉 (by induction). Else, measuring ξ j accidentally performed the collapse Pj =
(1/d)

∑d−1
k=0 ξ jkgk

f�
, which is in fact a projection3. Let e� be the isolated edge as above.

Since Zk
e�
gf�

= ξkgf�
Zk

e�
, we see that Z

j
e�
Pj = P0Z

j
e�

. Thus an appropriate power of Ze�

will fix the projection onto the unwanted eigenvalue so that the final state lies within the
+1 eigenspace of Hf�

.

Applying the process of the last paragraph clearly produces an element of Hgr . The
applications of Hf , Pj , and also Ze all respect H[jω] for 0 � j � d − 1. Note that
Hgr ∩H[jω] = C|[jω]〉. If S denotes the superoperator of the above sequence of measurements
and unitary maps, then equivalently we have shown S(Hloop) ⊆ Hgr ∩ H[jω]. Equality is
immediate after noting S|[jω]〉 = |[jω]〉.

However, the effect of the superoperator on relative phases is still unclear. Given the
global phase on |ω〉, there is a natural global phase on |[ω]〉 = π |ω〉. With the argument
above, we have actually verified that S|0〉 = eiϕ0 |[0]〉, S|ω〉 = eiϕ1 |[ω]〉, S|2ω〉 = eiϕ2 |[2ω]〉,
etc. Thus perhaps |ψstorage〉 = ∑d−1

j=0 eiϕj αj |[jω]〉. We argue that all of these relative phases
are in fact equal. For in terms of the observed eigenvalues,

S =
L−1∏
j=1

Z±j
e�

Pj (f�) =
L−1∏
j=1

P0(f�)Z
±j
e�

= π

L−1∏
�=1

Z±j
e�

. (13)

By choice of the support of |ω〉, also the support of |jω〉, we have
∏L−1

�=1 Z
±j
e�

|jω〉 = 1. Thus,
applying the superoperator S to |ψ̃〉 produces |ψstorage〉 = ∑d−1

j=0 αj |[jω]〉, given that we may

choose the {e�}L−1
�=1 to be disjoint from the support of ω.

3 Why is this a projection? Consider the unitary h = ξj gf�
and consider projection onto the stabilizer of 〈{h}〉.
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4.2. Retrieval

Thus we next consider retrieval of a qudit stored as in the last subsection, i.e. swapping
the data in a topological qudit with that encoded in some ancilla qudit. Physically, this is
more intricate than encoding, which amounts to creating a cycle class |ω〉 and then applying
stabilizer corrections for {gf }f ∈F generating Gf .

For retrieval, the central point is that we may apply a logical X operation to the encoded
qudit using O(

√
n) gates. To see this, for ω = ∑

e nee let X⊗ω = ⊗e∈EXne
e . This might

be thought of as a creation operator of an excitation of the loop ω, and moreover X⊗ω is an
element of the centralizer of G not contained within G. As such, it preserves the code space,
and one readily verifies that it must map |[jω]〉 	→ |[(j + 1)ω]〉, up to global phase. Hence,
we may apply controlled-X operations targeting the topological qudit using O(

√
n) physical

controlled-X operations.
We next consider a controlled-X operation controlled on the topological qudit and targeting

an ancilla. One must choose a cycle in the dual complex to � according to ω, say η. For
example, an earlier work [5, figure 3] depicts a picket fence dual to a loop generator of the first
homology group of a torus. In order to perform the required controlled-X, follow these steps.

• Prepare a second ancilla. Then prepare this second ancilla so that the Z eigenstate of the
ancilla measures Z⊗η.

• Perform the controlled-X contingent on this second ancilla.
• Disentangle, i.e. reverse the qudit gates of the first step.

Consequently, we can perform either controlled-X to or from the topologically encoded qudit.
The ability to perform a two-qudit controlled-X gate implies the ability to perform

controlled modular addition. The composition begins with a single controlled increment
triggering when the control carries |1〉, continues with two controlled increments when the
control carries |2〉, etc. The entire circuit thus realizes a controlled modular addition in
a number of controlled-X gates roughly the triangular number of d. Controlled modular
subtraction is similar.

Finally, modular addition and subtraction allow us to SWAP the topological qudit to an
ancilla. For bits, the standard three CNOT swap relies on the fact that CNOT exclusive-or’s
one bit to another. Thus the CNOTs perform b1b2 	→ b1(b1 ⊕ b2) 	→ b2(b1 ⊕ b2) 	→ b2b1. In
like manner, we may perform suitably controlled and targeted additions and subtractions for
the following sequence of dit operations:

d1d2 	→ d1(d1 + d2) 	→ (−d2)(d1 + d2) 	→ (−d2)d1 (14)

Hence, modifying gates so that a control symbol with a + or − target means to add or subtract
the control respectively, we have the following diagram:

We have not described how to complete the gate |j 〉 	→ |d − j 〉 on the topologically ordered
state. Rather than do so, we claim the top line as the ancilla. This also improves the cost of
the controlled additions.

4.3. Modified constructions using ancillary qudits

In the quantum circuit model of computation ancillary particles are often used as a means
to assist in gate operations and as an entropy dump during error correction cycles. In the
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context of surface codes it is tempting to borrow this idea and place qudits at the centre of
each face and on each vertex of the cellulation �, so that the appropriate stabilizer checks
might be done in place (see figure 1(b)). Recall, any state may be projected into the ground
state of the topologically ordered Hamiltonian H = H∂ + HKE using stabilizer checks to
the Pauli tensors {gv} � {gf } ⊂ P(n, d) (section 3.2). Each individual stabilizer check may
then be performed using a certain sequence of two-qudit gates and a neighbouring ancilla
(section 2.2). In fact, this basic observation presents an auxiliary Hamiltonian which also
computes the same topological order as the original. Namely, on the face-edge-vertex qudit
system, one may build a Hamiltonian which is in the ground state iff all the stabilizer checks
gv and gf are satisfied. For gv , suppose we use �v

e for the sum gate targeting the qudit of
vertex v and take nv to be the qudit number operator on v. Then

H̃ v =
∏

[∗,v]=e

�v
e

∏
[v,∗]=e

(
�v

e

)−1
nv

∏
[∗,v]=e

(
�v

e

)−1 ∏
[v,∗]=e

�v
e . (15)

Then |ψ〉 is in the ground state of H̃ v iff gv|ψ〉 = |ψ〉. Similarly, fix a face f ∈ F with
∂f = ∑�

j=1 njej for nj ∈ {1, d − 1}. We take Ff = ∏�
j=1(Fd)ej

and Uf = ∏�
j=1

(
�

f
ej

)nj for

�
f
e the sum gate targeting the f qudit. Then for nf the number operator of the qudit at the

center of the face f , we label

H̃ f = FfUf Ff
†nf FfU

†
f Ff

†. (16)

As before, we see that |ψ〉 is in the ground state of H̃ f iff gf |ψ〉 = |ψ〉. Thus for
h > 0 and U > 0, if H̃ = U

∑
v H̃ v + h

∑
f H̃ f , then the ground state of H̃ is also the

code space of G = 〈{gv} � {gf }〉, i.e. the topologically ordered ground state spanned by
{|[ω]〉; [ω] ∈ H1(�, Fd)}.

We finish this section describing another utility for ancillary particles, that is to mediate
many body interactions present in the Hamiltonian H (equation (6)) using more physically
motivated binary interactions. Consider the vertex constraint term Hv = −(

gv + g†
v

)
where

the valence at that vertex is k. This k-local interaction can be obtained as a perturbative limit
of 2-local interactions between each d-level qudit incident at v and a k-level ancillary qudit
a located at the vertex. Begin with a local Hamiltonian for the ancilla Ha = −Ea|0〉a〈0|,
and a perturbing interaction Va = Jv

∑k
r=1

(
Zor

er
⊗ |r − 1〉〈r| + h.c.

)
, where Ea � |Jv|

and the edge orientations give oj = 1 if ej = [∗, v] and oj = d − 1 if ej = [v, ∗]. By
construction, the lowest nontrivial, i.e. non-identity, contribution to coupling in the ground
subspace spanned by all ancilla in state |0〉 is the effective Hamiltonian Hv eff = U(Hv +O(ε))

where U = (−1)kEa(Jv/Ea)
k with an error term of norm ‖ε‖ � 1. By judicious choice of

sign(Jv) it is possible to fix U > 0. A similar argument applies to building the face constraint
Hf using a j -level ancilla b located at face f to mediate interactions between all j edges on the
boundary of f . Here we choose Hb = −Eb|0〉b〈0| and Vb = Jf

∑j

r=1

(
Xor

er
⊗|r −1〉〈r|+h.c.

)
such that Hf eff = h(Hf +O(ε)), where h = (−1)jEb(Jf /Eb)

j . These mediator qudits could
be placed on all the vertexes and faces of � to build an effective Hamiltonian in the subspace
spanned by states with all ancillae in the |0〉 state.

It was proven in [10, 17] that any k-local Hamiltonian for constant k acting on spins whose
coupling graph is a two-complex, can be closely approximated by the low energy projection of
a Hamiltonian built using only 2-local interactions with mediator particles. Here close means
that ‖Heff −H0 target‖ � �E, where Heff is the 2-local Hamiltonian H projected into the ground
states of the mediator particles, H0 target is the target k-local Hamiltonian restricted to its low
energy subspace, �E is the energy gap between the ground and excited states of H0 target, and
‖ · ‖ is a suitable operator norm. In the context of building the surface code Hamiltonian
this would imply that for sufficiently large energies Ea,Eb that scale linearly with the system
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size n, both the degeneracy of the ground subspace of Htarget = H∂ + HKE and the energy gap
to the excited states could be accurately approximated by Heff = ∑

v Hv eff +
∑

f Hf eff . An
analysis regarding the accuracy of such constructions for building topologically ordered states
is wanting, but is beyond the scope of this work.

5. Other homological ground states

We have originally presented the case of ground states for H1(�, Fd) for d prime, in order
to present the new orientation conventions in the simplest possible context. This section
describes a construction for homological order on dits whose number of levels is not prime
but rather a prime power. Homological order for arbitrary composite d follows immediately
through a tensor product of the prime-power Hamiltonians.

5.1. Homology Fd� stabilizer codes

The hypothesis in the main text has been that qudits have d levels, for d a prime so that each
|j 〉 is associated to an element of Fd . Recent work [11] extends stabilizer techniques to the
finite fields of order d�, i.e. Fd� , which exist for any � � 1.

The generic Fd� constitute all fields F with #F < ∞, so this is (perhaps) the most
general field for which a stabilizer code makes sense. The most typical construction of Fd�

is to consider the polynomial ring Fd [x] and divide out relations in the ideal generated by
some irreducible polynomial f (x) = x� + a�−1x

�−1 + · · · + a0, aj ∈ Fd . It is typical to
label α ∈ Fd� as the adjoined root corresponding to the class of x. The Galois group of the
extension Fd� over Fd , say K, then acts as permutations of the roots of f (x). Note that Fd�

is a vector space over the scalars Fd . Moreover, multiplication by any fixed a ∈ Fd� may
be viewed as a Fd -linear map, with an associated matrix with entries in Fd . Computing the
trace of this matrix creates a map {TraceFd� /Fd

: Fd� → Fd}. Another characterization is that
TraceFd� /Fd

(x) = ∑
κ∈K(κ · x). To ground the discussion, let us review not extensions over

finite fields but rather TraceC/R(z) = z + z = 2Re(z). The complex conjugate is the Galois
action that interchanges i ↔ −i, for C = R[x]/(x2 +1). We might instead form a 2×2 matrix
for multiplication by z = x + iy, which results in µz = x|0〉〈0| − y|1〉〈0| − y|0〉〈1| + x|1〉〈1|
with trace 2x.

For Fd� extending Fd the Galois group K is cyclic of order �, generated by x
κ	→xd for

x ∈ Fd� . Now κ generates a one-qud� it unitary Uκ by Uκ |x〉 = |κ · x〉, and the corresponding
diagonal unitary on the entire lattice will be denoted by Ũ κ .

5.1.1. Fourier transforms for Fd� . Having reviewed the machinery of finite fields, we next
review what one would mean by a stabilizer code of Pauli matrices indexed by it [11]. Since our
earlier qudit operators X and Z for Fd had order d, we might instead claim to have constructed
an X operator and a Z operator for each a ∈ Fd , i.e. Xa and Zb. For Fd� , we do not take
operator powers. Label H(1, d�) = ⊕a∈Fd�

C{|a〉}. Then suitable definitions are as follows,
where we define ξ = exp(2π i/d):{

X(a)|b〉 = |a + b〉
Z(a)|b〉 = ξ

TraceF
d� /Fd

(ab)|b〉. (17)

For � = 1, this generalizes the powers of earlier Pauli operators. Furthermore, with these
conventions we have a commutator relation

X(a)Z(b) = ξ
TraceF

d� /Fd
(ab)

Z(b)X(a). (18)
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Finally, let H(n, d�) = H(1, d�)⊗n. In a slight abuse of notation, for a, b ∈ (Fd� )n we will
write a • b = TraceFd� /Fd

(a0b0 + a1b1 + · · · + an−1bn−1). Then we may generalize the earlier
commutator formula for Pauli tensors as

[Z(b0) ⊗ Z(b1) ⊗ · · · ⊗ Z(bn−1)]

[X(a0) ⊗ X(a1) ⊗ · · · ⊗ X(an−1)] = ξa•b[X(a0) ⊗ X(a1) ⊗ · · · ⊗ X(an−1)]

× [Z(b0) ⊗ Z(b1) ⊗ · · · ⊗ Z(bn−1)]. (19)

Given this relation, one may define P(n, d�) to be that group generated by products of Pauli
tensors indexed by Fd� , as above. Continuing, we may consider sets of particular Pauli tensors
X(a0)Z(b0) ⊗ · · · ⊗ X(an−1)Z(bn−1) and consider the stabilizer subspaces of the subgroup
G ⊂ P(n, d�) they generate. The error lengths of such code are studied in detail [11].

Before considering which of these stabilizer codes arise as topological orders, we add a
point omitted in the original treatments. Namely, we wish to propose quantum circuits for the
appropriate stabilizer checks. We suppose the existence of a number operator measurement
which can output classical values in the finite field, say abusively n = ∑

a∈Fd�
a|a〉〈a|.

Then as with Fd , stabilizer checks would follow given an appropriate Fourier transform
Fd� : H(n, d�) → H(n, d�) which maps X(a) eigenstates to |a〉. This leads one to guess we
should define Fd� |a〉 = (d�)−1/2 ∑

b∈Fd�
Z(a)|b〉, i.e.

Fd�
def= (d�)−1/2

∑
a,b∈Fd�

ξ
TraceF

d� /Fd
(ab)|b〉〈a|. (20)

However, note that X(a) now has degenerate eigenspaces when � � 2. Thus, it is not clear
whether the above equation actually defines a unitary matrix.

We briefly comment on why unitarity holds. For convenience, let us drop the subscript
from the appropriate trace maps. A computation reveals that the unitarity assertion is equivalent
to knowing that for any fixed a ∈ Fd� which is nonzero,∑

b∈Fd�

ξTrace(ab) ?= 0. (21)

Since a �= 0 has a multiplicative inverse, this amounts to∑
b∈Fd�

ξTrace(b) ?= 0. (22)

Now suppose we use α to denote the formally adjoined root of f (x) in Fd� = Fd [x]/(f (x)).
Then since every equivalence class may be written as a polynomial of degree less than �, we
see that {αj }�−1

j=0 is a basis of Fd� over Fd . In terms of the last basis, we might express a generic
polynomial class in coordinates as b = b�−1x

�−1 + b�−2x
�−2 + · · · + b0 for bj ∈ Fd . Then

equation (22) becomes

d−1∑
b�−1=0

d−1∑
b�−2=0

· · ·
d−1∑
b0=0

[ξTrace(α�−1)]b�−1 [ξTrace(α�−2)]b�−1 · · · [ξTrace(1)]b0 ?= 0. (23)

This will in fact be zero, unless all Trace(αj ) = 0 mod p, 0 � j � � − 1. A standard
construction in field extensions is to form the discriminant of a basis, for our basis
� = ∑�−1

j,k=0 Trace(αj+k)|k〉〈j |. For a given basis, it is not possible that this matrix �

has determinant zero in Fd [theorem 2.37, p 61][16]. Since the first column of � cannot then
be zero, all Trace(αj ) may not be zero, and unitarity of Fd� follows.
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5.1.2. Homological order for Fd� . The chain complex for computing H1(�, Fd� ) extends
our early discussion by allowing for coefficients of the vertices, edges and face to be within
Fd� , which in the context is � copies of Fd since only the additive structure is relevant. Yet
the previous section has nontrivially extended our definition of X and Z operators to account
for field multiplication, and these operators may be used to form a homological order on the
physical system in which qud� its (with d� levels) are associated to the edges of �:

• For each vertex, we may again set gv = ∏
e=[∗,v] Ze(1)

∏
e=[v,∗] Ze(−1) and Hv =

−(
gv + g†

v

)
. Then again H∂ = U

∑
v∈V Hv .

• Again set gf = Xe1(o1)Xe2(o2)Xe3(o3) · · · Xep
(op), where ∂f = ∑p

�=1 o�e�. Put

Hf = −(
gf + g

†
f

)
. Given the generalization of the commutators of the new X and

Z operators, [Hf ,Hv] = 0 for any f, v. Then for h > 0,HKE = h
∑

f ∈F Hf .
• So H = H∂ + HKE. A similar argument to that given before produces a basis |[ω]〉 of the

groundspace of H, as [ω] runs over all elements of H1(�, Fd� ).
• These ground states may again be viewed as a stabilizer code of G = 〈{gv, gf }〉 �

P(n, d�). Stabilizer checks can be performed as before (see section 2.2). The only
required modifications are that the quantum circuit uses the new Fourier transform over
Fd� to measure X(a) operators and powers thereof and the number operator measurement
now takes values in Fd� .

We close with one further comment. Recall Ũ κ which act on each qud� it as Uκ |a〉 = |κ ·a〉 for
κ the generator of the cyclic Galois group of Fd� extending Fd . Now Ũ κH = HŨκ , as one can
verify directly using Hf and Hg . Thus we may view Ũ κ or more generally the Galois action
as a symmetry of the topologically ordered ground state. Also, πκ = �−1 ∑�−1

j=0 U
j
κ will then

act as a projection collapsing the ground state associated to elements of H1(�, Fd� ) onto the
ground state parametrized by H1(�, Fd) as constructed in section 3. In terms of Hamiltonians,
πκ projects onto the ground state of Hκ = −(

Uκ +U †
κ

)
, whose physical significance is unclear.

6. Z/dZ gauge theory and anyonic excitations

In our treatment of code subspaces, we have used the isomorphism between spins on a surface
and one-chains on a two-complex to label the ground states of the Hamiltonian H in terms of
homology equivalence classes. The language of cell complexes also carries over to describe
the excited states. If we identify the ground subspace of H as the vacuum then excited states
are labelled by Fd valued boundaries of one chains on the complex � or the dual complex �̃.
These excitations can be viewed as massive particles with definite statistics.

In this section we show by construction that our model is a Z/dZ gauge theory. Excitations
correspond to quasi-particles which are described by dyonic combinations of charge and flux
with Abelian anyonic statistics. We provide an algorithm in terms of an interferometer circuit
for measuring components of the scattering matrix for these particles.

6.1. Stabilizer errors as Abelian anyons

Consider a two-complex � with a physical system of qudits associated to each edge and a
topologically ordered Hamiltonian H as above. We have already seen how to associate a basis
of the ground-state eigenspace with elements of H1(�, Fd). As stabilizer states, it is well
known that the ground states are entangled. Abelian anyons arise as entangled excitations of
this system. In the qubit case, such excitations always arise in pairs [12]. In our generalization,
this is also true, and an excitation |j 〉 is always paired to an excitation |d − j 〉.
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The linear algebra for constructing a charge anyon is as follows. First, choose two vertices
v1 and v2 of � on which the anyon should reside with charges j and d − j respectively.
Choose a chain ω with ∂ω = jv1 + (d − j)v2. Recall from section 3.2 the projection
π = (#F)−1 ∑

f ∈F gf which projects onto the stabilizer code of all the face operators
gf = ⊗e∈∂f (Xe)

±. We set

|ψcharge anyon〉 = π |ω〉. (24)

The resulting state is an excited state of H∂ whose eigenenergy is 4U(1 − Re(e2iπj/d)) above
ground. It is not independent of the choice of ω, and this in fact allows for an interesting
geometric interpretation of the error length of the associated stabilizer code [5].

Let ω1 and ω2 be two such choices, with |ψ1〉 and |ψ2〉 the resulting anyon states. Then
ω1 − ω2 is a cycle, and

|φ〉 def= π(|ω1〉 − |ω2〉) = |ψ1〉 − |ψ2〉 (25)

is the ground-state eigenket associated to [ω1 − ω2] ∈ H1(�, Fd). Hence, if we encounter
such a charge anyon excitation which has sullied a qudit encoded in the ground state of H, then
correcting it amounts to choosing an cancelling anyon or equivalently to choosing a cycle on �.
If the dual charges of the anyon are separated by roughly half the diameter of the two-complex,
then this choice is likely to cause an error. Yet for nearby dual charges one might reasonably
guess [ω1 − ω2] = [0]. In particular, if � were to cellulate the square fundamental domain of
a torus using n qudits on the edges (implying �(

√
n) qudits on a side), then we would expect

an error length for the associated stabilizer code to be roughly O(
√

n) [5].
Similar comments apply not only to charge anyons but also flux anyons [12]. Here, one

chooses a path in the dual complex to �, i.e. a sequence of connected faces. Let |[0]〉 be the
homological ground state associated to [0] ∈ H1(�, Fd). A flux charge of multiplicity j on
the endpoints of the face path is associated to

|ψflux anyon〉 = πvg
±j

f1
g

±j

f2
· · · g±j

f�
|[0]〉 (26)

where πv = (#V)−1 ∑
v∈V gv and the path consists of faces f1, f2, . . . , f� with the signs

allowing for orientation. The flux anyon theory follows quickly by considering the charge
anyons of the dual two-complex to �, say �̃. Faces of � become vertices of �̃ while vertices
become faces, and the graph of �̃ arises by connecting vertices corresponding to incident faces
of �. Suitable hypotheses on the cellulation of the underlying two-manifold of � will cause
this dualization procedure to be well behaved [14], and one might associate charge-anyonic
observation of flux anyons and vice versa with pairings exploited in the proof of Poincaré
duality.

6.2. Quasi-particle statistics

We next wish to study such anyon states, i.e. errors of the stabilizer code as above. New
notation for the excitations follows. A charge a ∈ Z/dZ at vertex v is labeled by the state
|(a, 0; (v,−))〉 such that 〈(a, 0; (v,−))|gv|(a, 0; (v,−))〉 = ξa . Similarly, flux b ∈ Z/dZ at
face f is labeled by the state |(0, b; (−, f ))〉 such that 〈(0, b; (−, f ))|gf |(0, b; (−, f ))〉 = ξb.
A dyon refers to a bound state of charge and flux at vertex v and face f neighboring each
other, i.e. [v, ∗] ∈ ∂f or [∗, v] ∈ ∂f and (a, b) ∈ (Z/dZ)2. The state of such a dyon in
Hilbert space will be denoted by |(a, b; (v, f ))〉. For simplicity we restrict our discussion
to simply connected compact surfaces with boundary such that the ground (vacuum) state is
nondegenerate4.
4 In general |(a, b); (v, f )〉 describes an equivalence class of pure states which results from applying Xa

e Z−b
e to

any ground state. For a degenerate vacuum, particle creation, followed by braiding and annihilation can result in
non-trivial logical operations on the code subspace.
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(a)

(b)

Figure 3. Quasi-particle excitations on a honeycomb cellulation. (a) Excitations appear in
particle–antiparticle pairs. Charges(anti-charges) appear as boundaries on vertices represented by
open(filled) diamonds, and fluxes(anti-fluxes) as boundaries on the faces represented by open(filled)
squares. The total charge and flux of any pair is zero. Shown is a flux pair |(0, c); (0, −c)〉, charge
pairs |(j, 0); (j, 0)〉, |(k, 0); (−k, 0)〉 and a bound state of charge and flux pairs |(a, b); (−a,−b)〉.
Note that strings of the same or different types are allowed to intersect. (b) Fusion of quasi-
particles. The upper two diagrams illustrate corrective procedures to annihilate charge and flux
excitations. The lower two diagrams illustrate the fusion rules |(j, 0)〉× |(k, 0)〉 = |(j + k, 0)〉 and
|(0, j)〉 × |(0, −k)〉 = |(0, j − k)〉.

Pauli-group elements local to a single edge of � produce dyons of the topological order
in particle–antiparticle pairs. To see this, note that the operator Xa

e acting at edge e = [v1, v2]
creates a pair of boundaries on the vertices, one with charge a at v1 and other with charge d −a

at v2. We name the charge d −a particle an anti-charge to a. Similarly, the operator Zb
e creates
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quasi-particles located on the two faces f1 and f2 that share the edge e on their boundaries.
Let face f1 be the face with opposite orientation to e. Then the flux at f1 is b and the anti-flux
at f2 has the value d − b. A product operator XaZ−b acting on edge e creates the dyon (a, b)

with charge a at vertex v1 and flux b at face f1 (see figure 3(a)). When it might be clear from
the context, we will drop the particle location labels (v, f ), e.g. particle–antiparticle pairs
might be written as |(a, b); (−a,−b)〉. The mass of a dyon is given by the expectation value:
ma,b = 〈(a, b)|H |(a, b)〉 − E0 = 2U(1 − Re[ξa]) + 2h(1 − Re[ξb]), where E0 is the vacuum
energy. The energy to create a particle–antiparticle pair is twice this value.

Prior work in the continuum field theory has considered dyon excitations in which charges
and fluxes take values in Z/dZ. The interactions described by a Z/dZ gauge theory are
completely characterized by the following rules [18]:

|(a, b; (v, f ))〉 × |(a′, b′; (v, f ))〉 = |(a + a′, b + b′; (v, f ))〉 (27)

R|(a, b; (v, f ))〉|(a, b; (v′, f ′))〉 = ξab|(a, b; (v, f ))〉|(a, b; (v′, f ′))〉 (28)

R2|(a, b; (v, f ))〉|(a′, b′; (v′, f ′))〉 = ξ (a′b+b′a)|(a, b; (v, f ))〉|(a′, b′; (v′, f ′))〉 (29)

C|(a, b; (v, f ))〉 = |(−a,−b; (v, f ))〉 (30)

T |(a, b; (v, f ))〉 = ξab|(a, b; (v, f ))〉. (31)

We next review these rules and argue that the dyonic excitations of our Hamiltonian satisfy
them.

In our construction, local Z/dZ gauge transformations are generated by the unitary vertex
and face operators gv and gf . The first relation, equation (27), is the fusion rule for particles
occupying the same location where addition is performed modulo d. This rule follows from
the additivity of boundaries of one chains. Indeed, it is the ability to annihilate particle–
antiparticle pairs by choosing a trivial cycle on � or �̃ that makes correction of local errors
possible (see figure 3(b)). Such cycles are Wilson loops that are intrinsically gauge invariant
operators. The next two rules describe the action of the braid operator R which performs a
counterclockwise exchange, or half-braid, of one particle with another. The quantum state of
n indistinguishable particles residing on a surface belongs to a Hilbert space that transforms
as a unitary representation of the braid group Bn. If we order the positions of the particles
{(vj , fj )}nj=1, then the n − 1 generators of Bn correspond to the braid operator R acting on

the particle pairs in the locations {(vj , fj ), (vj+1, fj+1)}n−1
j=1. For a Z/dZ gauge theory, the

irreducible unitary representation of Bn is one dimensional, meaning the particles are Abelian
anyons. Note that the definition of the braid operator involves orientation of the path taken
during particle exchange. For a non-orientable surface, Z/dZ statistics for d > 2 are not
allowed because the clockwise trajectory of particle around another is not uniquely defined
whereas the phases ξ, ξ−1 are distinguishable except for d = 2.

The braiding of one dyon around another is shown in figure 4. Here we begin with a
state of two dyonic particle–antiparticle pairs: |�〉 = |(a, b); (−a,−b)〉|(a′, b′); (−a′,−b′)〉
in distinct locations on the surface. The mutual statistics are determined by winding one dyon,
(a, b) around the other (a′, b′) in a counterclockwise sense. This action is described by the
square of the braid operator, or the monodromy operator, which exchanges two particles in a
counterclockwise sense. A non trivial phase is accumulated under the action of R2 because the
closed loop string operators that wind (a, b) collide with the strings connected the dyon (a′, b′)
with its antiparticle. In the example shown in figure 4(a), the strings intersect at two locations
where we have the operators Z−bX−a′ = ξa′bX−a′

Zb and X−aZb′ = ξb′aZ−b′
X−a . Rewriting

these operators with the action of the closed strings (Pauli operators with unprimed powers)
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(a)

(b)

Figure 4. Braid relations. (a) Counterclockwise braiding of the dyon (a, b) around the dyon
(a′, b′): R2|(a, b)〉|(a′, b′)〉 = ξ (a′b+b′a)|(a, b)〉|(a′, b′)〉. (b) Counterclockwise exchange of
identical dyons: R|(a, b); (a, b)〉 = ξab|(a, b); (a, b)〉. The upper left-hand side of the surface
shows the counterclockwise winding of the charge component of a dyon (r, s) about its flux
component generating an Aharanov–Bohm phase according to T |(r, s)〉 = ξ rs |(r, s)〉.

first has the advantage that the closed strings act trivially provided that there are no other quasi-
particles inside the closed loops. Hence we have that R2|�〉 = ξ (a′b+b′a)|�〉. The preceding
example illustrated the Aharanov–Bohm phase accumulated when winding one charge around
a flux along a trajectory that was local, i.e. did not explore the global properties of the surface.
Were the flux absent, then the path would be homotopic to a point. One can also define this
phase for trajectories that explore the global properties of the surface, but can be continuously
deformed to a process where one anyon wraps around another. On a torus, for example, the
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following process traces out non trivial cycles for the charges and fluxes. Represent the torus
as a square with opposite sides identified, labelling the axes of the square x1, x2. Pick a non
trivial cycle along the x1 direction of �, and call it P1. Similarly, pick a non-trivial cycle along
the x2 direction of the dual �̃ and call it P2. To obtain the exchange statistics, first create the
dyonic particle antiparticle pair |�〉 = |(a, b; (v1, f1)); (−a,−b; (v2, f2))〉 out of the vacuum
state |�g〉. Wind the charge a along P1 so that it annihilates with its anticharge partner at site
v2. Next wind the flux b along P2 so that it annihilates with its antiflux partner at face f2.
Create another dyonic particle antiparticle pair |� ′〉 = |(a, b; (v2, f2)); (−a,−b; (v1, f1))〉
with particle antiparticle positions reversed relative to |�〉. Wind charge a along P1 in the
opposite direction to the first winding so that it annihilates with the anticharge at site v1 and
likewise, flux b along P2 in the opposite direction so that it annihilates with the antiflux at
face f2. These four trajectories cross at one edge e and the action on the state (for one choice
of edge orientation) is |�g〉 → Z−b

e X−a
e Zb

e X
a
e |�g〉 = ξab|�g〉. If we embed the torus in R3,

then the worldlines described by intersecting strings in the above process are equivalent under
ambient isotopy to linked worldlines on the plane which describe winding the charge a around
the flux b.

Identical quasi-particle statistics are determined by exchanging one dyon (a, b)

counterclockwise with another. Such a process is depicted in figure 4(b). The action on
the state |�〉 = |(a, b)〉|(a, b)〉 can be computed by annihilating particle–antiparticle pairs
after exchange, creating them again and comparing the resultant state with the initial state
|�〉. We can annihilate the charges on the left-hand side first. Reversing the order of
the operator that created the dyon there, we have XaZ−b = ξabZbXa and the charges are
annihilated by applying Zb. Similarly, the charges on the right-hand side are annihilated
by applying a string of Z−b operators. Finally, the fluxes are annihilated by applying Xa

or X−a along the remaining two connected strings. The action on the wavefunction is then
R|(a, b)〉|(a, b)〉 = ξab|(a, b)〉|(a, b)〉.

The particle conjugation operator C in equation (30) reverses the sign of all the particles.
This is realized in our microscropic spin model by reversing the orientation of all the edges
on the cellulation. Finally, the twist operation T in rule 31 rotates the charge component
of a dyon around its own flux, generating an Aharanov–Bohm phase in the process. This
is illustrated in figure 4(b). Here the charge component of the dyon (r, s) is wrapped
around its flux component in a counterclockwise sense. During this operation, there is a
collision at the edge where the dyon was created. Rewriting the operation on the edge as
X2rZ−s = ξ rsXrZ−sXr so that loop operation about boundary of the face f acts trivially first,
we have that T |r, s(v, f )〉 = ξ rs |r, s(v, f )〉.

6.3. Measuring statistical phases

In any physical construction of a Hamiltonian that admits topologically ordered states it
will be important to verify the predicted properties. One, albeit crude, observable is to
measure the energy gap from a ground state to a first excited state. This could be done by
probing the linear response of the ground states to a perturbing field oscillating at frequency
ωF that generates local unitary operation. For a system with the internal Hamiltonian
equation (6), the expected resonant absorption occurs at frequencies ωF = 2ma,b/h̄. However,
as a witness to topological order, this measure is not sufficient because there could be another
spin Hamiltonian with equal gap that does not possess topologically invariant correlation
functions. Another more convincing probe would be to directly compute the statistical
phases in equation (29). Operationally, this should be done by measuring both the phase
φτ accumulated when one particle (a, b) wraps around another (r, s) and the phase φ1 when
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Figure 5. Protocol for measuring quasi-particle statistics. The green circle represents an ancillary
particle which performs conditional gate operations on the qudit residing on edge e = [v2, v0].
The red lines indicate operations which are done adiabatically with respect to the energy gap �E.
The inset is a simplified space–time diagram of the braid.

the particle (a, b) traces out the same path in configuration space but does not enclose the
particle (r, s). The phase difference φτ −φ1 = φtop subtracts out dynamical phases and Berry’s
phases, leaving only topological information. We sketch an algorithm for computing this phase
using operations in accordance with the two complex illustrated in figure 5. Adaptation to
other cellulations is straightforward.

(i) Beginning from a ground state |�(0)〉, prepare a state with two particle–antiparticle pairs
in disjoint regions of the surface:

|�(1)〉 = |(a, b; (v3, f3)); (−a,−b; (v4, f4))〉
|(r, s; (v0, f0)); (−r,−s; (v1, f1))〉.

(ii) Prepare an ancillary qubit a in the state |+x〉a = 1√
2
(|0〉a + |1〉a) and use this qubit to

perform the controlled unitary operation ∧1
(
X−r

e Zs
e

) = |0〉a〈0| ⊗ 1d + |1〉a〈1| ⊗ X−r
e Zs

e

(with (r, s) �= (0, 0)) on the qudit residing on the edge e = [v2, v0]. Measure
the ancilla in the x̂ basis and record the result m = ±1. The resultant state is
|�(2)〉 = 1√

2

(|�(1)〉 + (−1)mX−r
e Zs

e |�(1)〉), where

X−r
e Zs

e |�(1)〉 = |(a, b; (v3, f3)); (−a,−b; (v4, f4))〉
|(r, s; (v2, f2)); (−r,−s; (v1, f1))〉

is orthogonal to |�(1)〉.
(iii) Use a sequence of local spin operations to drag the dyon at location (v2, f2) to the location

(v5, f5). These operations should be done adiabatically, i.e. they should be done using
localized control fields with frequency components much smaller than the minimum
gap energy �E. In this way no new particles will be created, only the component of
the wavefunction with the dyon located at (v2, f2) will be changed. Instead of using
control fields to perform a discrete sequence of local spin operations, it is more robust
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to slowly decrease the values of U and h while turning on generators for the local
spin operations on the vertices and faces in the path from (v2, f2) to (v5, f5) so that
it is energetically favourable for the dyon to follow this path. The resultant state is:
|�(3)〉 = 1√

2
(|�(1)〉 + (−1)m|� ′〉), where

|� ′〉 = |(a, b; (v3, f3)); (−a,−b; (v4, f4))〉
|(r, s; (v5, f5)); (−r,−s; (v1, f1))〉.

(iv) Braid the dyon (a, b; (v3, f3)) in a counterclockwise sense around the location (v5, f5)

such that it returns to location (v3, f3). The state is now: |�(4)〉 = 1√
2
(|�(1)〉 +

(−1)mξ (sa+rb)|� ′〉).
(v) Perform the inverse of the operations in step (iii), again ensuring that no new quasi-

particles are created during the process. The resulting state is: |�(5)〉 = 1√
2
(|�(1)〉 +

(−1)mξ (sa+rb) eiχX−r
e Zs

e |�(1)〉), where we have included χ , the sum of dynamical and
Berry’s phases that may have accumulated during steps (ii)–iv.

(vi) Reprepare the ancilla in the state |+x〉a and perform the controlled unitary operation
∧1

(
(−1)mZ−s

e Xr
e

)
. Measure the qubit in the x̂ basis. The expectation value is:〈

σx
a

〉
τ

= 1
2 (cos(χ + φtop) + δ2r,0δ2s,0 cos(χ + φtop − φAB)),

where φtop = 2π(sa + rb)/d is the topological phase associated with the exchange
statistics of the two dyons and φAB = 2πrs/d is the Aharanov–Bohm phase of the dyon
(r, s).

(vii) Repeat steps (i)–(vi) but measure the ancilla in the ŷ basis. The expectation value is〈
σy

a

〉
τ

= 1
2 (sin(χ + φtop) − δ2r,0δ2s,0 sin(χ + φtop − φAB)).

(viii) Perform a similar experiment but this time using a trivial braiding operation, i.e. perform
the steps in the order (i), (ii), (iv), (iii), (v), (vi), (vii) so that the braid is contractible.
Then the expectation values are〈

σx
a

〉
1 = 1

2 (cos χ + δ2r,0δ2s,0 cos(χ − φAB)),〈
σy

a

〉
1 = 1

2 (sin χ − δ2r,0δ2s,0 sin(χ − φAB)).

(ix) Compute the topological phase φtop from an ensemble average obtained by repeated
measurements on identically prepared systems.

As a simple example, consider the computation of the mutual statistics of charge and a
flux for d = 2. Setting (r, s) = (0, 1) and (a, b) = (1, 0), the expected measurement results
are

〈
σx

a

〉
τ

= 1
2 cos(χ + φtop),

〈
σ

y
a

〉
τ

= 0,
〈
σx

a

〉
1 = 1

2 cos χ,
〈
σ

y
a

〉
1 = 0. If desired, the phase χ

could be engineered to vary in a controlled manner over different trials in order to improve
the visibility of the phase shift φtop. For this case, the ancillary qubit is not necessary and one
could apply the rotation operators Ue = eiπZe/4 at step (ii) and U

†
e at step vi and measure

〈
Ze

〉
.

For d > 2 it is always possible to choose the probe dyon such that δ2r,0δ2s,0 = 0. In this case,
φtop is estimated by finding the closest solution to eiφtop = (〈

σx
a

〉
τ

+ i
〈
σ

y
a

〉
τ

)/(〈
σx

a

〉
1 + i

〈
σ

y
a

〉
1

)
.

There are three primary sources of error which could degrade the signal. First, after the
creation of the quasiparticle pairs there is no energy penalty for moving the particles and in fact
any local perturbing field acting on the surface can impart dynamics. If the particles or their
associated antiparticles diffuse away from the intended braiding path then this will degrade
the measured signal at the end of the protocol. The problem can be obviated by slightly
decreasing the strength of the vertex and face constraints where the particles reside. For the
particles with fixed locations this means reducing the local values of U and g there and for the
moving particles this means changing the values of U and g along the braiding path. Doing
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so creates a localizing potential which can confine the particles provided that the strength
of the perturbing local field is small compared to the mass. Another source of error while
traversing the braiding path is creating new unwanted quasiparticles. This can be avoided by
performing local spin operations adiabatically with respect to the mass gap. Finally, there can
be errors in applying the two controlled rotation operators between the ancilla qubit and its
target edge qudit. Because these are controlled operations, in principle they as well as the final
measurement can be done fault tolerantly.

7. Conclusions

We have proven the existence of a microscopic spin model that provides for topologically
protected qudit encodings. This model describes a Z/dZ gauge theory with Abelian
charge/flux dyons as excitations. The construction is quite general, allowing for arbitrary
cellulations of an orientable surface and encoding qudits with any finite number of levels.
Suggested adaptations to the standard spin models using ancilla for in place stabilizer checks
could prove advantageous in any physical implementation of such codes. Moreover, by
performing local spin operations along a braiding path, the anyonic statistical phases can be
measured with an ancillary particle. Recent interference experiments of a different kind have
successfully measured anyonic statistics in specific fractional quantum Hall states [4]. The
mechanism described here complements that approach to provide a novel set of tools for
probing topological order in spin lattices.
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